Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 583
Filtrar
1.
Lipids Health Dis ; 23(1): 103, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615017

RESUMO

BACKGROUND: Previous studies have demonstrated the relationship between adipocyte factors, insulin resistance, and other indicators with telomere length. However, these studies did not consider the influence of changes in different indicators on telomere length over time. Therefore, the aim of this study is to elucidate the impact of changes in adipocyte factors, HOMA-IR, and other indicators on the dynamic variation of telomere length. METHODS: The data were from a cohort study conducted in Ningxia, China. A total of 1624 subjects were analyzed. Adipokines and relative leukocyte telomere length (RLTL) were measured, and changes in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), Homeostatic Model Assessment for ß-Cell Function (HOMA-ß), and Quantitative Insulin Sensitivity Check Index (QUICKI) were calculated. Generalized linear models evaluated associations between changes in adipokines and RLTL changes. Furthermore, univariate analyses examined the effects of changes in adipokines and insulin resistance indicators on ΔRLTL. RESULTS: The research findings indicate that females generally have shorter telomeres compared to males. In comparison to the low-level group of Δleptin (LEP), the high-level group of ΔLEP shows a negative correlation with ΔRLTL (B=-1.32, 95% CI (-2.38, -0.27)). Even after multivariable adjustments, this relationship persists (B=-1.31, 95% CI (-2.24, -0.23)). Further analysis reveals that after adjusting for ΔHOMA-IR, ΔHOMA-ß, and ΔQUICKI, the high-level group of ΔLEP still exhibits a significant negative correlation with ΔRLTL (B=-1.37, 95% CI (-2.43, -0.31)). However, the interaction effects between ΔHOMA-IR, ΔHOMA-ß, ΔQUICKI, and ΔLEP do not affect ΔRLTL. CONCLUSIONS: Elevated levels of leptin were significantly correlated with shortened telomere length. This suggests that increased leptin levels may impact overall individual health by affecting telomere length, underscoring the importance of measures to reduce leptin levels to mitigate the onset and progression of related diseases.


Assuntos
Resistência à Insulina , Leptina , Feminino , Masculino , Humanos , Leptina/genética , Estudos de Coortes , Resistência à Insulina/genética , População Rural , Encurtamento do Telômero , Telômero/genética , Adipocinas , China , Leucócitos
2.
Plant Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630900

RESUMO

Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.

3.
Alzheimers Dement ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605605

RESUMO

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.

4.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587399

RESUMO

Catheter-related infection (CRI) is a common nosocomial infection caused by candida albicans during catheter implantation. Typically, biofilms are formed on the outer surface of the catheter and lead to disseminated infections, which are fatal to patients. There are no effective prevention and treatment management in clinics. Therefore, it is urgent to establish an animal model of CRI for the preclinical screening of new strategies for its prevention and treatment. In this study, a polyethylene catheter, a widely used medical catheter, was inserted into the back of the BALB/c mice after hair removal. Candida albicans ATCC MYA-2876 (SC5314) expressing enhanced green fluorescent protein was subsequently inoculated on the skin's surface along the catheter. Intense fluorescence was observed on the surface of the catheter under a fluorescent microscope 3 days later. Mature and thick biofilms were found on the surface of the catheter via scanning electron microscopy. These results indicated the adhesion, colonization, and biofilm formation of candida albicans on the surface of the catheter. The hyperplasia of the epidermis and the infiltration of inflammatory cells in the skin specimens indicated the histopathological changes of the CRI-associated skin. To sum up, a mouse CRI model was successfully established. This model is expected to be helpful in the research and development of therapeutic management for candida albicans associated CRI.


Assuntos
Candida albicans , Infecções Relacionadas a Cateter , Humanos , Camundongos , Animais , Cateteres , Modelos Animais de Doenças , Biofilmes , Antifúngicos
5.
Front Cell Dev Biol ; 12: 1370287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434618

RESUMO

Parkinson's Disease (PD) is characterized by the temporary alleviation of motor symptoms following electrode implantation (or nucleus destruction), known as the microlesion effect (MLE). Electrophysiological studies have explored different PD stages, but understanding electrophysiological characteristics during the MLE period remains unclear. The objective was to examine the characteristics of local field potential (LFP) signals in the subthalamic nucleus (STN) during the hyperacute period following implantation (within 2 days) and 1 month post-implantation. 15 patients diagnosed with PD were enrolled in this observational study, with seven simultaneous recordings of bilateral STN-LFP signals using wireless sensing technology from an implantable pulse generator. Recordings were made in both on and off medication states over 1 month after implantation. We used a method to parameterize the neuronal power spectrum to separate periodic oscillatory and aperiodic components effectively. Our results showed that beta power exhibited a significant increase in the off medication state 1 month after implantation, compared to the postoperative hyperacute period. Notably, this elevation was effectively attenuated by levodopa administration. Furthermore, both the exponents and offsets displayed a decrease at 1 month postoperatively when compared to the hyperacute postoperative period. Remarkably, levodopa medication exerted a modulatory effect on these aperiodic parameters, restoring them back to levels observed during the hyperacute period. Our findings suggest that both periodic and aperiodic components partially capture distinct electrophysiological characteristics during the MLE. It is crucial to adequately evaluate such discrepancies when exploring the mechanisms of MLE and optimizing adaptive stimulus protocols.

6.
Aesthetic Plast Surg ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519571

RESUMO

BACKGROUND: Conchal cartilage is generally favored in rhinoplasty with a satisfied aesthetic outcome. However, patients may suffer from postoperative donor auricle deformities. OBJECTIVES: This study introduced a novel conchal cartilage harvesting technique which can minimize the deformity of auricle and harvest the sufficient amounts of grafts. METHODS: This study proposed preservation of the concha cymba and cavum support structures to minimize the deformity of auricle and harvest of cartilage hidden in the craniofacial region to obtain the sufficient amounts. The medical records of 60 patients who underwent the novel conchal cartilage harvesting were reviewed retrospectively. Postoperative aesthetic outcomes were assessed by comparing pre- and postoperative photographs according to the deformation extent of auricular subunits (cymba concha, cavum concha, antihelix, helix crus and intertragal notch) on a four-point Likert scale. Additionally, function and complications were analyzed. RESULTS: 56 patients performed unilateral conchal cartilage harvesting (8 with right-side and 48 with left-side) and 4 performed bilateral harvesting. The average aesthetic score, rated on a four-point Likert scale (1 = significant deformation, 2 = moderated deformation, 3 = slight deformation, 4 = complete no deformation), were 3.83 ± 0.03 points, respectively. The functional scores, rated on a four-point Likert scale (1 = significant damage, 2 = moderated damage, 3 = slight damage, 4 = complete no damage), was 3.94±0.03. Complications included hematoma, delayed wound healing and hypopigmentated scar in six ears (9.4%). CONCLUSIONS: This novel technique can minimize the deformity of auricle, as shown by the outcome scores, and allows for sufficient amount of grafting material acquired. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

7.
Front Immunol ; 15: 1306059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524123

RESUMO

Background: There is a growing acknowledgment of the potential influence of antioxidative effects resulting from dietary decisions on the occurrence of stroke. The objective of this study was to elucidate the correlation between the composite dietary antioxidant index (CDAI) and the incidence of stroke in the general population of the United States. Methods: We gathered cross-sectional data encompassing 40,320 participants from the National Health and Nutrition Examination Survey (NHANES) spanning the years 1999 to 2018. Employing weighted multivariate logistic regression, we assessed the correlation between CDAI and stroke, while also investigating potential nonlinear relationships through restricted cubic spline (RCS) regression. Further, the intake of CDAI components were then incorporated into a predictive nomogram model, subsequently evaluated for its discriminatory prowess in stroke risk assessment using the receiver operating characteristic (ROC) curve. Results: Post-adjustment for confounding variables, we found that higher CDAI score were associated with a decreased risk of stroke, the odds ratio (OR) [95% CI] of CDAI associating with prevalence was 0.96 [0.94-0.98] (P< 0.001). Moreover, the adjusted OR [95% CI] for stroke across ascending CDAI quartiles stood at 0.90 [0.74-1.09], 0.74 [0.60-0.91], and 0.61 [0.50-0.76] compared to the reference quartile, respectively. The RCS analysis indicated a nonlinear yet negative correlation between CDAI and stroke. The nomogram model, constructed based the intake of antioxidants, exhibited a significant predictive capacity for stroke risk, boasting an area under the curve (AUC) of 77.4% (76.3%-78.5%). Conclusion: Our investigation ascertained a nonlinear negative relationship between CDAI and stroke within the broader American population. However, given the inherent limitations of the cross-sectional design, further comprehensive research is imperative to establish the causative nature of this association.


Assuntos
Antioxidantes , Acidente Vascular Cerebral , Humanos , Prevalência , Estudos Transversais , Inquéritos Nutricionais , Acidente Vascular Cerebral/epidemiologia
8.
EBioMedicine ; 102: 105092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547579

RESUMO

BACKGROUND: The high heterogeneity of tumour and the complexity of tumour microenvironment (TME) greatly impacted the tumour development and the prognosis of cancer in the era of immunotherapy. In this study, we aimed to portray the single cell-characterised landscape of lung adenocarcinoma (LUAD), and develop an integrated signature incorporating both tumour heterogeneity and TME for prognosis stratification. METHODS: Single-cell tagged reverse transcription sequencing (STRT-seq) was performed on tumour tissues and matched normal tissues from 14 patients with LUAD for immune landscape depiction and candidate key genes selection for signature construction. Kaplan-Meier survival analyses and in-vitro cell experiments were conducted to confirm the gene functions. The transcriptomic profile of 1949 patients from 11 independent cohorts including nine public datasets and two in-house cohorts were obtained for validation. FINDINGS: We selected 11 key genes closely related to cell-to-cell interaction, tumour development, T cell phenotype transformation, and Ma/Mo cell distribution, including HLA-DPB1, FAM83A, ITGB4, OAS1, FHL2, S100P, FSCN1, SFTPD, SPP1, DBH-AS1, CST3, and established an integrated 11-gene signature, stratifying patients to High-Score or Low-Score group for better or worse prognosis. Moreover, the prognostically-predictive potency of the signature was validated by 11 independent cohorts, and the immunotherapeutic predictive potency was also validated by our in-house cohort treated by immunotherapy. Additionally, the in-vitro cell experiments and drug sensitivity prediction further confirmed the gene function and generalizability of this signature across the entire RNA profile spectrum. INTERPRETATION: This single cell-characterised 11-gene signature might offer insights for prognosis stratification and potential guidance for treatment selection. FUNDING: Support for the study was provided by National key research and development project (2022YFC2505004, 2022YFC2505000 to Z.W. and J.W.), Beijing Natural Science Foundation (7242114 to J.X.), National Natural Science Foundation of China of China (82102886 to J.X., 81871889 and 82072586 to Z.W.), Beijing Nova Program (20220484119 to J.X.), NSFC general program (82272796 to J.W.), NSFC special program (82241229 to J.W.), CAMS Innovation Fund for Medical Sciences (2021-1-I2M-012, 2022-I2M-1-009 to Z.W. and J.W.), Beijing Natural Science Foundation (7212084 to Z.W.), CAMS Key lab of translational research on lung cancer (2018PT31035 to J.W.), Aiyou Foundation (KY201701 to J.W.). Medical Oncology Key Foundation of Cancer Hospital Chinese Academy of Medical Sciences (CICAMS-MOCP2022003 to J.X.).


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Povo Asiático , Comunicação Celular , Microambiente Tumoral/genética , Proteínas de Transporte , Proteínas dos Microfilamentos , Proteínas de Neoplasias
10.
Mycopathologia ; 189(2): 28, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483684

RESUMO

BACKGROUND: Fungal keratitis (FK) is a kind of infectious keratopathy with a high rate of blindness worldwide. Deoxynivalenol (DON) has been proven to have multiple toxic effects on humans and animals. OBJECTIVES: The aim of this study was to explore a possible pathogenic role of DON in FK. METHODS: We first made an animal model of FK in New Zealand white rabbits, and then attempted to detect DON in a culture medium in which Fusarium solani had been grown and also in the corneal tissue of the animal model of Fusarium solani keratitis. Next, a model of DON damage in human corneal epithelial cells (HCECs) was constructed to evaluate effects of DON on the activity, migration ability, cell cycle, and apoptosis in the HCECs. Then, putative the toxic damaging effects of DON on rabbit corneal epithelial cells and the impact of the repair cycle were studied. The expression levels of inflammatory factors in the corneas of the animal model and in the model of DON-damaged HCECs were measured. RESULTS: The Fusarium solani strain used in this study appeared to have the potential to produce DON, since DON was detected in the corneal tissue of rabbits which had been inoculated with this Fusarium solani strain. DON was found to alter the morphology of HCECs, to reduce the activity and to inhibit the proliferation and migration of HCECs. DON also induced the apoptosis and S-phase arrest of HCECs. In addition, DON was found to damage rabbit corneal epithelial cells, to prolong the corneal epithelial regeneration cycle, and to be associated with the upregulated expression of inflammatory factors in HCECs and rabbit corneas. CONCLUSIONS: DON appears to have a toxic damaging effect on HCECs in FK, and to induce the expression of inflammatory factors, leading to the exacerbation of keratitis and the formation of new blood vessels. Future studies will explore the possibility of developing a test to detect DON in ophthalmic settings to aid the rapid diagnosis of FK, and to develop DON neutralizers and adsorbents which have the potential to improve keratocyte status, inhibit apoptosis, and alleviate inflammation, therein providing new thinking for therapy of clinical FK.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Fusarium , Ceratite , Tricotecenos , Humanos , Coelhos , Animais , Ceratite/microbiologia , Células Epiteliais
11.
Nano Lett ; 24(12): 3727-3736, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498766

RESUMO

The permeability of the highly selective blood-brain barrier (BBB) to anticancer drugs and the difficulties in defining deep tumor boundaries often reduce the effectiveness of glioma treatment. Thus, exploring the combination of multiple treatment modalities under the guidance of second-generation near-infrared (NIR-II) window fluorescence (FL) imaging is considered a strategic approach in glioma theranostics. Herein, a hybrid X-ray-activated nanoprodrug was developed to precisely visualize the structural features of glioma microvasculature and delineate the boundary of glioma for synergistic chemo-radiotherapy. The nanoprodrug comprised down-converted nanoparticle (DCNP) coated with X-ray sensitive poly(Se-Se/DOX-co-acrylic acid) and targeted Angiopep-2 peptide (DCNP@P(Se-DOX)@ANG). Because of its ultrasmall size and the presence of DOX, the nanoprodrug could easily cross BBB to precisely monitor and localize glioblastoma via intracranial NIR-II FL imaging and synergistically administer antiglioblastoma chemo-radiotherapy through specific X-ray-induced DOX release and radiosensitization. This study provides a novel and effective strategy for glioblastoma imaging and chemo-radiotherapy.


Assuntos
Glioblastoma , Glioma , Nanopartículas , Nitrofenóis , Humanos , Glioblastoma/patologia , Raios X , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Nanopartículas/química , Quimiorradioterapia , Doxorrubicina
12.
Small ; : e2400662, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534137

RESUMO

Developing high-performance electrocatalysts for alkaline hydrogen evolution reaction (HER) is crucial for producing green hydrogen, yet it remains challenging due to the sluggish kinetics in alkaline environments. Pt is located near the peak of HER volcano plot, owing to its exceptional performance in hydrogen adsorption and desorption, and Rh plays an important role in H2O dissociation. Lanthanides (Ln) are commonly used to modulate the electronic structure of materials and further influence the adsorption/desorption of reactants, intermediates, and products, and noble metal-Ln alloys are recognized as effective platforms where Ln elements regulate the catalytic properties of noble metals. Here Pt1.5Rh1.5Tm alloy is synthesized using the sodium vapor reduction method. This alloy demonstrates superior catalytic activity, being 4.4 and 6.6 times more effective than Pt/C and Rh/C, respectively. Density Functional Theory (DFT) calculations reveal that the upshift of d-band center and the charge transfer induced by alloying promote adsorption and dissociation of H2O, making Pt1.5Rh1.5Tm alloy more favorable for the alkaline HER reaction, both kinetically and thermodynamically.

13.
Autophagy ; : 1-11, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522082

RESUMO

MCOLN1/TRPML1 is a nonselective cationic channel specifically localized to the late endosome and lysosome. With its property of mediating the release of several divalent cations such as Ca2+, Zn2+ and Fe2+ from the lysosome to the cytosol, MCOLN1 plays a pivotal role in regulating a variety of cellular events including endocytosis, exocytosis, lysosomal biogenesis, lysosome reformation, and especially in Macroautophagy/autophagy. Autophagy is a highly conserved catabolic process that maintains cytoplasmic integrity by removing superfluous proteins and damaged organelles. Acting as the terminal compartments, lysosomes are crucial for the completion of the autophagy process. This review delves into the emerging role of MCOLN1 in controlling the autophagic process by regulating lysosomal ionic homeostasis, thereby governing the fundamental functions of lysosomes. Furthermore, this review summarizes the physiological relevance as well as molecular mechanisms through which MCOLN1 orchestrates autophagy, consequently influencing mitochondria turnover, cell apoptosis and migration. In addition, we have illustrated the implications of MCOLN1-regulated autophagy in the pathological process of cancer and myocardial ischemia-reperfusion (I/R) injury. In summary, given the involvement of MCOLN1-mediated autophagy in the pathogenesis of cancer and myocardial I/R injury, targeting MCOLN1 May provide clues for developing new therapeutic strategies for the treatment of these diseases. Exploring the regulation of MCOLN1-mediated autophagy in diverse diseases contexts will surely broaden our understanding of this pathway and offer its potential as a promising drug target.Abbreviation: CCCP:carbonyl cyanide3-chlorophenylhydrazone; CQ:chloroquine; HCQ: hydroxychloroquine;I/R: ischemia-reperfusion; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MCOLN1/TRPML1:mucolipin TRP cation channel 1; MLIV: mucolipidosis type IV; MTORC1:MTOR complex 1; ROS: reactive oxygenspecies; SQSTM1/p62: sequestosome 1.

14.
Cell Death Discov ; 10(1): 152, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521771

RESUMO

Acute lung injury (ALI) is an acute and progressive hypoxic respiratory failure that could progress to acute respiratory distress syndrome (ARDS) with a high mortality rate, thus immediate medical attention and supportive care are necessary. The pathophysiology of ALI is characterized by the disruption of the alveolar-capillary barrier and activation of neutrophils, leading to lung tissue damage. The receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising target for the treatment of multiple inflammatory diseases, but the role of RIPK1 in the ALI remains poorly understood. In this study, we aimed to figure out the pathological role of RIPK1 in ALI, especially in the pulmonary immune microenvironment involving neutrophils and endothelial cells. In vivo experiments showed that RIPK1 inhibitor protected against lipopolysaccharide (LPS)-induced lung injury in mouse models, with reduced neutrophils and monocytes infiltration in the lungs. Further studies demonstrated that, besides the inhibitory action on necroptosis, RIPK1 inhibitor directly suppressed reactive oxygen species (ROS) generation and inflammatory cytokines secretion from neutrophils. Furthermore, RIPK1 inhibition maintains the barrier function in TNF-α-primed vascular endothelial cells and prevents their activation induced by the supernatant from LPS-stimulated neutrophils. Mechanistically, the aforementioned effects of RIPK1 inhibitor are associated with the NF-κB signaling pathway, which is partially independent of necroptosis inhibition. These results provide new evidence that RIPK1 inhibitor directly regulates the function of neutrophils and endothelial cells, as well as interferes with the interactions between these two cell types, therefore contributing to a better understanding of RIPK1 in ALI and providing a potential avenue for future therapeutic interventions.

15.
J Med Chem ; 67(5): 4194-4224, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442261

RESUMO

Retinoic acid receptor-related orphan receptor γ (RORγ) acts as a crucial transcription factor in Th17 cells and is involved in diverse autoimmune disorders. RORγ allosteric inhibitors have gained significant research focus as a novel strategy to inhibit RORγ transcriptional activity. Leveraging the high affinity and selectivity of RORγ allosteric inhibitor MRL-871 (1), this study presents the design, synthesis, and characterization of 11 allosteric fluorescent probes. Utilizing the preferred probe 12h, we established an efficient and cost-effective fluorescence polarization-based affinity assay for screening RORγ allosteric binders. By employing virtual screening in conjunction with this assay, 10 novel RORγ allosteric inhibitors were identified. The initial SAR studies focusing on the hit compound G381-0087 are also presented. The encouraging outcomes indicate that probe 12h possesses the potential to function as a powerful tool in facilitating the exploration of RORγ allosteric inhibitors and furthering understanding of RORγ function.


Assuntos
Corantes Fluorescentes , Células Th17 , Corantes Fluorescentes/farmacologia , Fatores de Transcrição , Regulação da Expressão Gênica , Polarização de Fluorescência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
16.
Cell Discov ; 10(1): 26, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443370

RESUMO

Single-cell whole-genome sequencing methods have undergone great improvements over the past decade. However, allele dropout, which means the inability to detect both alleles simultaneously in an individual diploid cell, largely restricts the application of these methods particularly for medical applications. Here, we develop a new single-cell whole-genome sequencing method based on third-generation sequencing (TGS) platform named Refresh-seq (restriction fragment ligation-based genome amplification and TGS). It is based on restriction endonuclease cutting and ligation strategy in which two alleles in an individual cell can be cut into equal fragments and tend to be amplified simultaneously. As a new single-cell long-read genome sequencing method, Refresh-seq features much lower allele dropout rate compared with SMOOTH-seq. Furthermore, we apply Refresh-seq to 688 sperm cells and 272 female haploid cells (secondary polar bodies and parthenogenetic oocytes) from F1 hybrid mice. We acquire high-resolution genetic map of mouse meiosis recombination at low sequencing depth and reveal the sexual dimorphism in meiotic crossovers. We also phase the structure variations (deletions and insertions) in sperm cells and female haploid cells with high precision. Refresh-seq shows great performance in screening aneuploid sperm cells and oocytes due to the low allele dropout rate and has great potential for medical applications such as preimplantation genetic diagnosis.

17.
Psychol Rep ; 127(2): 786-806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462852

RESUMO

Reactive aggression is an aggressive response to a perceived threat or provocation. It has detrimental effects on individuals and society. Rejection sensitivity, a disposition that one tends to anxiously expect, readily perceive, and intensely react to social rejection, has been associated with reactive aggression. Considering that the mechanism underlying this link remains unclear, this study explores the mediating role of loneliness and maladaptive coping. Participants included 1104 early adults between the ages of 17-23 (Mage = 20.35, SD = 1.11, 33.6% men) in China who completed the Chinese version of the Tendency to Expect Rejection Scale, Loneliness Scale, Ways of Coping Questionnaire, and Reactive-Active Aggression Questionnaire. The serial mediation model revealed that loneliness and maladaptive coping independently mediated the association of rejection sensitivity with reactive aggression. More importantly, the chain mediating effect of "loneliness-maladaptive coping" also accounted for this link. The above findings contribute to a deeper understanding of the relationships among these factors and suggested that rejection sensitivity could positively be related to reactive aggression through loneliness and maladaptive coping.


Assuntos
Agressão , Solidão , Testes Psicológicos , Autorrelato , Masculino , Adulto , Humanos , Adolescente , Adulto Jovem , Feminino , 60670 , Personalidade
18.
J Med Chem ; 67(6): 4346-4375, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484122

RESUMO

Over the past decades, the role of rearranged during transfection (RET) alterations in tumorigenesis has been firmly established. RET kinase inhibition is an essential therapeutic target in patients with RET-altered cancers. In clinical practice, initial efficacy can be achieved in patients through the utilization of multikinase inhibitors (MKIs) with RET inhibitory activity. However, the effectiveness of these MKIs is impeded by the adverse events associated with off-target effects. Recently, many RET-selective inhibitors, characterized by heightened specificity and potency, have been developed, representing a substantial breakthrough in the field of RET precision oncology. This Perspective focuses on the contemporary understanding of RET mutations, recent advancements in next-generation RET inhibitors, and the challenges associated with resistance to RET inhibitors. It provides valuable insights for the development of next-generation MKIs and selective RET inhibitors.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas c-ret/genética , Medicina de Precisão , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Neoplasias Pulmonares/tratamento farmacológico
19.
Int Immunopharmacol ; 131: 111886, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493691

RESUMO

BACKGROUND AND AIMS: Increased apoptosis of intestinal epithelial cells (IECs) is a significant cause of intestinal barrier dysfunction in Crohn's disease (CD). Sophoricoside (SOP) is an isoflavone glycoside known for its anti-apoptotic properties. The aim of this study was to investigate the effects of SOP on mice with CD-like colitis and to understand the underlying mechanisms. METHODS: Mice treated with 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to examine the therapeutic effect of SOP on CD-like colitis and intestinal barrier damage. To further explore SOP's impact on IECs apoptosis and intestinal barrier protection, an in vitro colonic organoid apoptosis model induced by TNF-α was utilized. Network pharmacology was employed to predict the relevant pathways and molecular processes associated with SOP in the treatment of CD. RESULTS: Treatment with SOP significantly improved colitis symptoms in TNBS mice, as demonstrated by reductions in the Disease Activity Index (DAI), weight loss, colon shortening, macroscopic scores, colonic tissue inflammatory scores, and the expression of pro-inflammatory factors. Our experiments confirmed that SOP protects the intestinal barrier by counteracting IECs apoptosis. Additionally, this study established that SOP reduced IECs apoptosis by inhibiting the PI3K/AKT signaling pathway. CONCLUSIONS: SOP can reduce IECs apoptosis through the inhibition of the PI3K/AKT signaling pathway, thereby protecting the intestinal barrier. This study is the first to illustrate how SOP ameliorates colitis and protects the intestinal barrier, suggesting SOP has potential clinical application in treating CD.


Assuntos
Benzopiranos , Colite , Doença de Crohn , Camundongos , Animais , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mucosa Intestinal , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Apoptose , Transdução de Sinais , Células Epiteliais , Colo/metabolismo
20.
Chem Biol Interact ; 392: 110924, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401715

RESUMO

The aim of this study was to investigate the potential drug-drug interactions (DDIs) between ticagrelor and other drugs as well as their underlying mechanisms. Rat liver microsome (RLM) reaction system was used to screen potential DDIs in vitro, and ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect the levels of ticagrelor and AR-C124910XX, the main metabolite of ticagrelor. A total of 68 drugs were screened, 11 of which inhibited the production of AR-C124910XX to 20% or less, especially two flavonoids (myricetin and quercetin). The half-maximal inhibitory concentration (IC50) of myricetin on ticagrelor was 11.51 ± 0.28 µM in RLM and 17.96 ± 0.54 µM in human liver microsome (HLM). The IC50 of quercetin in inhibiting ticagrelor in RLM and HLM was 16.92 ± 0.49 µM and 60.15 ± 0.43 µM, respectively. They all inhibited the metabolism of ticagrelor through a mixed mechanism. In addition, Sprague-Dawley (SD) rats were used to study the interactions of ticagrelor with selected drugs in vivo. We found that the main pharmacokinetic parameters including AUC (0-t), AUC (0-∞) and Cmax of ticagrelor were significantly increased when ticagrelor was combined with these two flavonoids. Our results suggested that myricetin and quercetin of flavonoids both had significant effects on the metabolism of ticagrelor, providing reference data for the clinical individualized medication of ticagrelor.


Assuntos
Quercetina , Espectrometria de Massas em Tandem , Humanos , Ratos , Animais , Ticagrelor/farmacologia , Ticagrelor/metabolismo , Quercetina/farmacologia , Cromatografia Líquida/métodos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos , Flavonoides/farmacologia , Flavonoides/metabolismo , Microssomos Hepáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...